Bacterial Transposon Tn7 Utilizes Two Different Classes of Target Sites

KENNETH M. KUBO^{1,2*} AND NANCY L. CRAIG^{1,2,3}

Department of Biochemistry and Biophysics,¹ Department of Microbiology and Immunology,² and the George W. Hooper Foundation,³ University of California, San Francisco, San Francisco, California 94143

Received 26 September 1989/Accepted 26 January 1990

Sites of transposon Tn7 insertion in the *Escherichia coli* chromosome were examined, and two distinct classes of target sites differing in nucleotide sequence were identified. The target site choice was found to be determined by Tn7-encoded transposition genes.

Most transposable elements move at low frequency and insert into many different target sites (5). The bacterial transposon Tn7 (2, 7; Fig. 1A) is unusual in that it can transpose at high frequency to a specific site in the *Escherichia coli* chromosome called *att*Tn7, located near the bacterial *glmS* gene (2, 10, 15, 16, 18; Fig. 1B). Tn7 can also transpose at low frequency to many different sites in plasmids (3, 4, 19). Tn7 insertion is accompanied by a 5-base-pair (bp) duplication of target sequences (10, 14, 16, 18, 20). Tn7 encodes five genes, *tnsABCDE*, that mediate two distinct but overlapping transposition pathways (23, 26; Fig. 1A). Previous studies have shown that *tnsABC+tnsD* promote transposition to *att*Tn7, whereas *tnsABC+tnsE* promote transposition to other sites.

We have analyzed Tn7 insertions in the *E. coli* chromosome; its large size provides a wider variety of target sites than do the plasmids used in previous studies. We report here that the target site sequences used by the *tnsD*-dependent (*tnsABC+tnsD*) and *tnsE*-dependent (*tnsABC+tnsE*) pathways differ dramatically. We show that the *tnsD*-dependent pathway has high target site selectivity, promoting transposition to *att*Tn7 and a limited number of other sites similar in sequence to *att*Tn7. By contrast, the *tnsE*-dependent pathway displays little target site selectivity, promoting transposition to many different sites not related in sequence to the *tnsD*-dependent sites.

We evaluated the frequency of Tn7 transposition to the E. coli chromosome (Table 1) by measuring the translocation of mini-Tn7Km, a Tn7 derivative containing a kanamycin resistance marker but lacking the *tns* genes (1, 18; Fig. 1C), from the replication- and integration-defective bacteriophage lambda derivative KK1 into bacteria containing the *tns* genes and selecting for kanamycin-resistant colonies (18). Strains and plasmids used are shown in Table 2. We also physically analyzed many of these mini-Tn7Km chromosomal insertions (Fig. 2 and Table 3). Genomic DNA was isolated (22), digested with restriction enzymes, resolved by agarose gel electrophoresis, and transferred to Nytran (Schleicher & Schuell, Inc.), and filters were hybridized with a nick-translated kanamycin fragment or a nick-translated Tn7R fragment.

tnsABC+tnsD promoted relatively high-frequency transposition to the chromosome (Table 1, line 4), and all such insertions were located in attTn7 (Fig. 2A). To determine whether tnsABC+tnsD could also promote transposition to sites other than attTn7, we used a slightly different target

chromosome, one already containing a Tn7 derivative in attTn7. We used this blocked attTn7 chromosome because multiple Tn7 insertions in attTn7 have not been observed (1, 12, 15). We detected tnsD-dependent transposition to the blocked attTn7 chromosome at a frequency about 10⁴-fold lower than to vacant attTn7 (Table 1, line 4). Analysis of these tnsD-dependent insertions revealed that they occurred into a limited array of sites (Table 3), with a marked preference for sites DC-1, DC-2, and DC-3 (DC = tnsABC+tnsD chromosomal).

Comparison of the sequences of several DC sites with

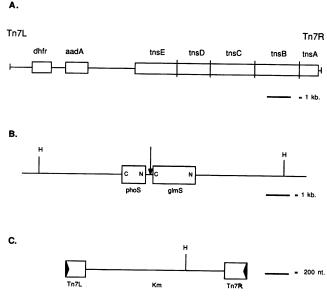


FIG. 1. Tn7, attTn7, and mini-Tn7Km. (A) Tn7. The left (Tn7L) and right (Tn7R) ends of Tn7 are indicated. Tn7 contains two resistance determinants: dhfr, encoding a dihydrofolate reductase providing trimethoprim resistance, and *aadA*, encoding 3" (9)-Onucleotidyltransferase providing spectinomycin and streptomycin resistance (8, 9, 25). The five Tn7 transposition genes *tnsABCDE* (23, 26) are shown. (B) Chromosomal attTn7. The point of Tn7 insertion \downarrow lies between the *phoS* and *glmS* genes, as previously described (10, 15, 16, 18). Tn7 insertion into attTn7 is orientation specific such that Tn7L is proximal to *phoS* and Tn7R is proximal to *glmS* (15). (C) Mini-Tn7Km. The ends of Tn7 are shown as open boxes; the segment between them encodes a gene that confers resistance to kanamycin (1, 18). Restriction site: H, *Hind*III. kb, Kilobase; nt, nucleotides.

^{*} Corresponding author.

		Mean transposition frequency (Km ^r colonies/PFU) \pm SEM (n)								
tns gene	Plasmid	Vacant attTn7	attTn7::mini-Tn7Cm							
None	None	$<4.3 \times 10^{-8}$ (3)	<6.3 × 10 ⁻⁹ (3)							
tnsABC	pCW21	$<4.3 \times 10^{-8}$ (3)	$<6.3 \times 10^{-9}$ (3)							
tnsABCDE::mini-Mu	pCW4miniMuΩ76	ND ^b	$(1.0 \pm 0.3) \times 10^{-7}$ (6)							
tnsABC+tnsD	pCW21 + pCW23	$(3.9 \pm 2.8) \times 10^{-4}$ (6)	$(3.0 \pm 1.1) \times 10^{-8}$ (3)							
tnsABC+tnsE	pCW21 + pCW30	$(3.0 \pm 0.0) \times 10^{-7}$ (3)	$(9.1 \pm 2.4) \times 10^{-8}$ (3)							
tnsABCDE	pCW4	$(8.0 \pm 1.0) \times 10^{-5}$ (3)	$(1.1 \pm 0.3) \times 10^{-7}$ (6)							

TABLE 1. Transposition frequency to the *E. coli* chromosome^a

^a E. coli used were derivatives of NLC51 or LA214 containing the indicated plasmids (Table 1).

^b ND, Not done.

each other and with attTn7 (Fig. 3) revealed considerable sequence similarity among all of these tnsD-dependent target sites. This similarity was most pronounced to one side (rightward) of the Tn7 insertion points; little similarity was apparent at the actual insertion points. Strikingly, this region of similarity between the DC sites and attTn7 included a region that has been shown to be required for high-frequency, site-specific insertion into attTn7 (11, 18, 21). Because of their similarity to attTn7, we call the DC sites pseudo-attTn7 sites. Thus, tnsABC+tnsD direct transposition to target sites of related nucleotide sequence, promoting high-frequency insertion in attTn7 and low-frequency insertion in pseudo-attTn7 sites.

tnsABC+tnsE promoted low-frequency transposition to the chromosome (Table 1, line 5). Physical analysis showed that the tnsABC+tnsE pathway ignored chromosomal

attTn7 (compare Fig. 2A and B). A more detailed analysis of tnsE-dependent insertions in a blocked attTn7 chromosome demonstrated that EC (tnsABC+tnsE chromosomal) sites were located in many different positions (Table 3). Notably, no two tnsE-dependent insertions occurred at the same target site, nor were any tnsE-dependent insertions located in the identified pseudo-attTn7 sites.

To examine the Tn7 insertions at higher resolution, we determined the nucleotide sequences for several DC and EC sites (Fig. 3). Chromosomal DNA segments containing mini-Tn7Km insertions were isolated by cloning into pUC18 with selection for kanamycin resistance (17). The sequences flanking the insertions were determined by the chain terminator method, using Sequenase (U.S. Biochemical Corp.), after alkali denaturation (24). Oligonucleotides specific to the left and right Tn7 ends were used as primers.

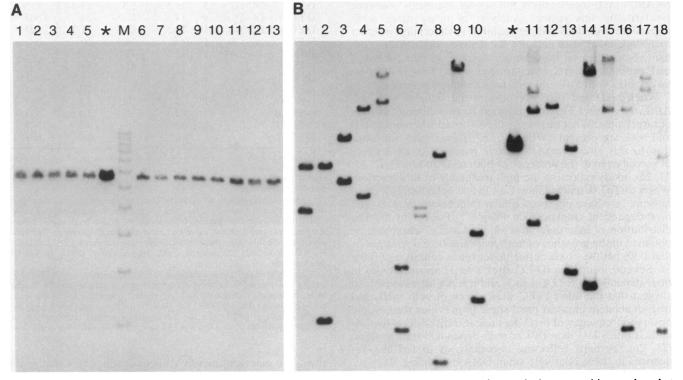


FIG. 2. Distribution of chromosomal insertion sites. Each numbered lane contains genomic DNA from a single transposition product that was physically analyzed as described in the text. Genomic DNA was digested with *Hind*III and hybridized with a nick-translated kanamycin fragment. The lanes marked * are from an *att*Tn7::mini-Tn7Km chromosome; digestion with *Hind*III generates two 6.5-kilobase fragments (Fig. 1) not resolved here which hybridize to the kanamycin probe. Lane M contains molecular weight markers. (A) *tnsABC+tnsD* insertions generated in a vacant *att*Tn7 chromosome as in Table 1, line 4; (B) *tnsABC+tnsE* insertions in a vacant *att*Tn7 chromosome generated as in Table 1, line 5.

TABLE 2. Strains and plasmids used

Strain or plasmid	Genotype or description	Refer- ence
E. coli strains	•	· · · · ·
NLC51	F ⁻ araD139A Δ(argF-lac)U169 rpsL150 relA1 flbB5301 deoC1 ptsF25 rbsR Val ^r recA56	26
LA214	NLC51 attTn7::mini-Tn7Cm ^a	1
Plasmids		
pCW4	pACYC184 derivative contain- ing tnsABCDE	26
pCW4miniMuΩ76	Same as pCW4 except for in- sertion in <i>tnsE</i> inactivating that gene	26
pCW21	pACYC184 derivative contain- ing <i>tnsABC</i>	26
pCW23	pUC18 derivative containing tnsD	26
pCW30	pUC18 derivative containing <i>tnsE</i>	26

^a Mini-Tn7Cm is a Tn7 derivative lacking the *tns* genes and containing a chloramphenicol resistance marker (1, 18).

Comparison of the DC sites with the EC sites (Fig. 3) did not reveal any striking sequence similarities between these two classes of target sites, although both resulted in a 5-bp target sequence duplication. A modest similarity among our EC sites was detectable about 15 bp leftward of the Tn7 insertion point; however, its functional significance is unclear. We note that previously characterized plasmid insertions of Tn7 (14, 16, 20), which likely resulted from tnsABC+tnsE transposition, do not all share this sequence similarity in this region. Analysis of many more tnsEdependent insertions will be required to determine whether tnsE-dependent sites actually do share a common determinant. Nevertheless, the emergent picture is that tnsABC+tnsE promote low-frequency transposition to many different target sites with little obvious target sequence selectivity.

When tnsD and tnsE are present individually with tns-ABC, they direct Tn7 transposition to two different classes of target sites. What target site class is used when both *tnsD* and *tnsE* are present? When *att*Tn7 is available, transposition to this site (a tnsABC+tnsD reaction) is exclusively observed even in the presence of both tnsD and tnsE (12, 15, 23, 26), likely reflecting the high frequency of this reaction. When attTn7 is unavailable, i.e., in a blocked attTn7 chromosome, we have observed similar frequencies of *tnsD*- and tnsE-dependent transposition (Table 1, lines 3 to 6). The distribution of insertions in a blocked attTn7 chromosome obtained in the presence of both *tnsD* and *tnsE* also suggests that both pathways are active under these conditions (Table 3). Several insertions (D/EC sites 1 to 3) apparently lie in tnsD-dependent sites DC 1 to 3, and it is not unreasonable to suggest that the other D/EC sites represent both tnsD- and tnsE-dependent chromosomal sites. In previous studies, the observed frequency of tnsD-dependent transposition to plasmids is much less than that of *tnsE*-dependent transposition (23, 26), perhaps reflecting a paucity of attTn7-like sequences in these relatively small DNA molecules.

We have shown that Tn7 can transpose to two distinct classes of target sites. tnsABC+tnsD transposition utilizes target sites of related sequence, directing insertion into attTn7 and pseudo-attTn7 sites. By contrast, tnsABC+tnsEtransposition utilizes many different target sites not markedly related to each other or to the tnsD-dependent target

TABLE 3. Physical analysis of mini-Tn7Km insertions in the blocked attTn7 chromosome^a

1 1 1 1 1 1 1 1 1 1 1 1	<i>Eco</i> RI 13.5–20 11.5–15.5 10.5–13 14 19 19 17 12.5 11.5 7.3 13 4.4 19 9.3 ND 11 7.7 7.0 12	12–13.5 16.5–17 17 6.5 13.5 12 20 17.5 15 17.5 19 15 15 16.5 15.5 17.5	Hind a 11-11.5 18.5-20 11-12 17-17.5 ND 9.0-9.8 ND 10 18 3.0-3.1 16 16.5-19 10.5-12.5 16.5 8.0 9.0 17 18.5	b 10.5 7.1-8.0 ND ND 3.4 ND ND 2.1 1.8-1.9 8.1 2.9 4.2-4.6 ND ND ND 8.0-8.7
12 10 7 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13.5-20 11.5-15.5 10.5-13 14 19 19 17 12.5 11.5 7.3 13 4.4 19 9.3 9.3 ND 11 7.7 7.0	7.3–7.8 15–17.5 12–13.5 16.5–17 17 6.5 13.5 12 20 17.5 15 15 15 15 15 15.5 17.5	11-11.5 18.5-20 11-12 17-17.5 ND 9.0-9.8 ND 10 18 3.0-3.1 16 16.5-19 10.5-12.5 16.5 8.0 9.0 17	10.5 7.1-8.0 ND ND ND 3.4 ND ND 2.1 1.8-1.9 8.1 2.9 4.2-4.6 ND ND 8.0-8.7
10 7 2 1	11.5–15.5 10.5–13 14 19 19 17 12.5 11.5 7.3 13 4.4 19 9.3 9.3 ND 11 7.7 7.0	$15-17.5 \\ 12-13.5 \\ 16.5-17 \\ 17 \\ 6.5 \\ 13.5 \\ 12 \\ 20 \\ 17.5 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 100 \\ 10$	18.5-20 11-12 17-17.5 ND 9.0-9.8 ND 10 18 3.0-3.1 16 16.5-19 10.5-12.5 16.5 8.0 9.0 17	7.1-8.0 ND ND 3.4 ND ND ND ND 2.1 1.8-1.9 8.1 2.9 4.2-4.6 ND ND ND 8.0-8.7
10 7 2 1	11.5–15.5 10.5–13 14 19 19 17 12.5 11.5 7.3 13 4.4 19 9.3 9.3 ND 11 7.7 7.0	$15-17.5 \\ 12-13.5 \\ 16.5-17 \\ 17 \\ 6.5 \\ 13.5 \\ 12 \\ 20 \\ 17.5 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.5 \\ 100 \\ 10$	18.5-20 11-12 17-17.5 ND 9.0-9.8 ND 10 18 3.0-3.1 16 16.5-19 10.5-12.5 16.5 8.0 9.0 17	7.1-8.0 ND ND 3.4 ND ND ND ND 2.1 1.8-1.9 8.1 2.9 4.2-4.6 ND ND ND 8.0-8.7
7 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.5–13 14 19 19 17 12.5 11.5 7.3 13 4.4 19 9.3 9.3 ND 11 7.7 7.0	12–13.5 16.5–17 17 6.5 13.5 12 20 17.5 15 17.5 19 15 15 16.5 15.5 17.5	11-12 17-17.5 ND 9.0-9.8 ND 10 18 3.0-3.1 16 16.5-19 10.5-12.5 16.5 8.0 9.0 17	ND ND 3.4 ND ND ND 2.1 1.8–1.9 8.1 2.9 4.2–4.6 ND ND 8.0–8.7
2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 19 19 17 12.5 11.5 7.3 13 4.4 19 9.3 9.3 ND 11 7.7 7.0	16.5–17 17 6.5 13.5 12 20 17.5 15 17.5 19 15 16.5 15.5 17.5	17-17.5 ND 9.0-9.8 ND 10 18 3.0-3.1 16 16.5-19 10.5-12.5 16.5 8.0 9.0 17	ND ND 3.4 ND ND 2.1 1.8–1.9 8.1 2.9 4.2–4.6 ND ND ND 8.0–8.7
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19 19 17 12.5 11.5 7.3 13 4.4 19 9.3 9.3 ND 11 7.7 7.0	17 6.5 13.5 12 20 17.5 15 17.5 19 15 15 16.5 15.5 17.5	ND 9.0-9.8 ND 10 18 3.0-3.1 16 16.5-19 10.5-12.5 16.5 8.0 9.0 17	ND 3.4 ND ND 2.1 1.8–1.9 8.1 2.9 4.2–4.6 ND ND ND 8.0–8.7
1 1 1 1 1 1 1 1 1 1 1 1 1 1	19 17 12.5 11.5 7.3 13 4.4 19 9.3 9.3 ND 11 7.7 7.0	6.5 13.5 12 20 17.5 15 17.5 19 15 15 15.5 15.5 17.5	9.0–9.8 ND 10 18 3.0–3.1 16 16.5–19 10.5–12.5 16.5 8.0 9.0 17	3.4 ND ND 2.1 1.8–1.9 8.1 2.9 4.2–4.6 ND ND ND 8.0–8.7
1 1 1 1 1 1 1 1 1 1 1 1	17 12.5 11.5 7.3 13 4.4 19 9.3 9.3 ND 11 7.7 7.0	13.5 12 20 17.5 15 17.5 19 15 15 15.5 15.5 17.5	ND 10 18 3.0–3.1 16 16.5–19 10.5–12.5 16.5 8.0 9.0 17	ND ND 2.1 1.8–1.9 8.1 2.9 4.2–4.6 ND ND ND 8.0–8.7
1 1 1 1 1 1 1 1 1 1 1 1	12.5 11.5 7.3 13 4.4 19 9.3 9.3 ND 11 7.7 7.0	12 20 17.5 15 17.5 19 15 15 16.5 15.5 17.5	10 18 3.0-3.1 16 16.5-19 10.5-12.5 16.5 8.0 9.0 17	ND ND 2.1 1.8–1.9 8.1 2.9 4.2–4.6 ND ND ND 8.0–8.7
1 1 1 1 1 1 1 1 1 1 1	11.5 7.3 13 4.4 19 9.3 9.3 ND 11 7.7 7.0	20 17.5 15 17.5 19 15 15 16.5 15.5 17.5	18 3.0–3.1 16 16.5–19 10.5–12.5 16.5 8.0 9.0 17	ND 2.1 1.8–1.9 8.1 2.9 4.2–4.6 ND ND 8.0–8.7
1 1 1 1 1 1 1 1 1 1	7.3 13 4.4 19 9.3 9.3 ND 11 7.7 7.0	17.5 15 17.5 19 15 15 16.5 15.5 17.5	3.0–3.1 16 16.5–19 10.5–12.5 16.5 8.0 9.0 17	2.1 1.8–1.9 8.1 2.9 4.2–4.6 ND ND ND 8.0–8.7
1 1 1 1 1 1 1 1 1	13 4.4 19 9.3 9.3 ND 11 7.7 7.0	15 17.5 19 15 15 16.5 15.5 17.5	16 16.5–19 10.5–12.5 16.5 8.0 9.0 17	1.8–1.9 8.1 2.9 4.2–4.6 ND ND 8.0–8.7
1 1 1 1 1 1 1 1 1	13 4.4 19 9.3 9.3 ND 11 7.7 7.0	15 17.5 19 15 15 16.5 15.5 17.5	16 16.5–19 10.5–12.5 16.5 8.0 9.0 17	1.8–1.9 8.1 2.9 4.2–4.6 ND ND 8.0–8.7
1 1 1 1 1 1 1 1	4.4 19 9.3 9.3 ND 11 7.7 7.0	17.5 19 15 15 16.5 15.5 17.5	16.5–19 10.5–12.5 16.5 8.0 9.0 17	8.1 2.9 4.2-4.6 ND ND 8.0-8.7
1 1 1 1 1 1 1	19 9.3 9.3 ND 11 7.7 7.0	19 15 15 16.5 15.5 17.5	10.5–12.5 16.5 8.0 9.0 17	2.9 4.2-4.6 ND ND ND 8.0-8.7
1 1 1 1 1 1	9.3 9.3 ND 11 7.7 7.0	15 15 16.5 15.5 17.5	16.5 8.0 9.0 17	4.2-4.6 ND ND ND 8.0-8.7
1 1 1 1 1	9.3 ND 11 7.7 7.0	15 16.5 15.5 17.5	8.0 9.0 17	ND ND ND 8.0-8.7
1 1 1 1	ND 11 7.7 7.0	16.5 15.5 17.5	9.0 17	ND ND 8.08.7
1 1 1	11 7.7 7.0	15.5 17.5	17	ND 8.08.7
1 1	7.7 7.0	17.5	-	8.0-8.7
1	7.0		18.5	
		< A		
1	10	6.0	7.2	1.9-2.0
1	13	15.5	5.4	2.4-2.6
1	12	11.5	3.3	ND
1	ND	15.5	6.1	1.8
1	ND	15.5	5.8	2.3
1	7.5	7.0	2.2-2.3	2.1
1	8.0	17	3.3-3.5	2.9
3	16.5	7.5	11-11.5	10.5
4	14	17.5	20	ND
1	11.5	13.5	11.5	ND
	4.9	14.5	10	ND
1	11.5	11	2.2	ND
	9.8	11	8.8	ND
1	9.8	3.8	19.5	ND
	10.5		ND	ND
				ND
				ND
1				ND
1	7.3	16	4.8	
	1 1	1 4.9 1 11.5 1 9.8 1 9.8 1 10.5 1 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 4.9 14.5 10 1 11.5 11 2.2 1 9.8 11 8.8 1 9.8 3.8 19.5 1 10.5 6.7 ND 1 15 10.5 3.4 1 8.6 11 5.1

^a Genomic DNA from various mini-Tn7Km insertions in a blocked attTn7 chromosome obtained as described in Table 1 (tnsABC+tnsD as in line 4; tnsABC+tnsE as in line 5; tnsABCDE as in line 6) was physically analyzed as described in the text.

^b Independent insertions are classified as in the same target site if they share similar restriction fragment sizes; size ranges are from determinations repeated on separate blots. Insertions producing restriction fragments of related size were examined on the same blot, and additional restriction fragments were analyzed to confirm target site classes (data not shown). DC, *tnsABC+ tnsD* chromosomal; EC, *tnsABC+tnsE* chromosomal; D/EC, *tnsABCDE* chromosomal.

^c Lengths of mini-Tn7Km-containing restriction fragments, as detected by using a nick-translated kanamycin fragment or a nick-translated Tn7R fragment. Both probes identify *EcoRI* and *Bam*HI fragments containing intact mini-Tn7Km and flanking DNA. For *Hind*III, the kanamycin probe identifies two fragments (a and b) and the Tn7R probe identifies one fragment (a) containing portions of mini-Tn7Km and flanking DNA. ND, Not done.

sites. The emergent picture (this work; 23, 26) is that genes tnsABC provide functions common to all Tn7 transposition events, whereas tnsD and tnsE determine the target site. An attractive hypothesis is that TnsD and TnsE are target DNA-binding proteins, TnsD being a specific DNA-binding protein recognizing attTn7 and pseudo-attTn7 sites and TnsE being a nonspecific DNA-binding protein. In support

	* *	*	*	*	*	*	*	*		*			*	* *		*		×	**	**	**	* * *	***	***	* *	*	*	*	*
DC-1	TGAGA	AT	GAG	ГTG		G 🗛	CAT	AAC	AAAC	A A T	I G G T 1	G AG	GCAG	CACA	GCAA	GCT	GGGG	TAG	GAC	AG	TA	C TG/	\TTT	CGCC	A T A	TTT	CAGA	ATCA	GGG
DC-2	GTGCGC	GC	стс	T T C	GCT	A T T	ACG	CCA	зстб	COC/		STCA	GGG	TAGG	TAAC	GTA	ATAC	CGCC	GCC	G G 1	-	ACG	GTGC	GCC A	ACG	TGG	G C C G	TTGG	GGG
DC-3	GTGCCC	CC	CA T	TC	TGG	CCG	GAA	CAAC	3 T G G	AAGO	TCAC	CAG	TTGG	CGAG	CATI	GAA	GAAT	AGG	AAC	GCI	A T '	TCG	CAGC	TTGC	GCI	GCT	A A C A	TTT	GGC
DC-6	TGCACI	ст/	CCC	ac c	ATC	A A C	GCC	G TA	тсса	60 C	ודדד		TG AA	GGGC	A G A G	acg t	TCG	TTAC	CAC	TG1	TA	C AG	T A T T	C GC A	ATG	ACG	GCAT	C CT 1	CGT
	-3	0			-20			-10	,		0		•	10		+20)		+30			+.	40		+	50		+60	
					1			1			1			1		1			1				ł					1	
	GTTTGA	TT.	4 A A /	A A C	A T A	A C A	GGA.	AGA /	A A A A	TGC	CCGG		GCA	GGGC	ATCO	A T T	TATT	ACTC		CGI		CCG/	TTT	TGCC	AGG	TTA	cGCG	GCTO	G T C
																		со	OH te	minus	of gi	mS							
																			requ	red fo	attT	n7 tarc	let activ	itv.					
0	DC-2 DC-3 DC-6	DC-2 GTGCGC DC-3 GTGCCC DC-6 TGCACT -3	DC-2 GTGCGCGCC DC-3 GTGCCCCCC DC-6 TGCACTCT/ -30	DC-2 GTGCGCGCCTCT DC-3 GTGCCCCCCATA TGCACTCTACCC -30 	DC-2 GTGCGCGCCTCTTC DC-3 GTGCCCCCCATATC DC-6 TGCACTCTACCGCC -30 I	DC-2 GTGCGCGCCTCTTGGCT. DC-3 GTGCCCCCCATATCTGG DC-6 TGCACTCTACCGCCATC. -30 -20 	DC-2 GTGCGCGCCCTCTCGCTATT DC-3 GTGCCCCCATATCTGGCCG TGCACTCTACCGCCATCAAC -30 -20 	DC-2 GTGCGCGCCTCTTCGCTATTACG DC-3 GTGCCCCCATATCTGGCCGGAA DC-6 TGCACTCTACCGCCATCAACGCC -30 -20 	DC-2 GTGCGCGCCTCTTGGCTATTACGCCA GTGCCCCCCATATCTGGCCGGAACAA DC-6 TGCACTCTACCGCCATCAACGCCGTA -30 -20 -10 	DC-2 GTGCGCGCCTCTTCGCTATTACGCCAGCTG DC-3 GTGCCCCCCATATCTGGCGGGAACAAGTGG DC-6 TGCACCCCATACCGCCATCAACGCCGTATCCG -30 -20 -10 - -1 -1	DC-2 GTGCGCGCCTCTTGGCTATTACGCCAGCTGCC C-3 GTGCCCCCCATATCTGGCCGGAACAAGTGGAAG TGCACTCTACCGCCATCAACGCCGTATCCGGCG -30 -20 -10 -31 - 1 - 1	DC-2 GTGCGCGCCCCTTTCGCTATTACGCCAGCTGCCCACAT DC-3 GTGCCCCCATATCTGGCCGGAACAAGTGAAGGTCA DC-6 TGCACTCTACCGCCATAACGCCGTATCCGCCCTTTT -30 -20 -10 0 -1 1 -1 -1	DC-2 GTGCGCGCCTCTTCGCTATTACGCCAGCTGCCCCACATCTCAC GTGCCCCCCATATCTGGCCGGAACAAGTGGAAGGTCAGCAG DC-6 TGCACTCTACCGCCATCAACGCCGTATCCGCCCTTTTAACC -30 -20 -10 0 -30 -20 -10 0 -30 -20 -10 0	DC-2 GTGCGCGCCTCTTCGCTATTACGCCAGCTGCCACATCTCACGGG GTGCCCCCCATATCTGGCCGGAACAAGTGGAAGGTCAGCAGTGG TGCACTCTACCGCCATCACGCCGTATCCGGCCTTTTTAACTGAA -30 -20 -10 0 + 1 1 1 1	DC-2 GTGCGCGCCTCTTCGCTATTACGCCAGCTGCCCACATCTCACGGGTAGG GTGCCCCCATATCTGGCCGGAACAAGTGGAA <u>GGTCA</u> CAGTTGCCGAG TGCACTCTACGCCATCAACGCCGTATCCGCCCCTTTTTAACTGAAGGC -30 -20 -10 0 +10 I I I I I	DC-2 GTGCGCGCCTCTTCGCTATTACGCCAGCTGCCACATCTCACQGGTAGGTAAC GTGCCCCCCATATCTGGCCGGAACAAGTGGAAGGTCAGCAGTGGCGAGCATT TGCACTCTACCGCCATCAACGCCGTATCCGGCCTTTTTAAACTGAAGGGCAGAG -30 -20 -10 0 +10 I I I I I I	DC-2 GTGCGCGCCTCTTCGCTATTACGCCAGCTGCCCACATCTCACCGGTAGGTA	DC-2 GTGCGCGCCTCTTCGCTATTACGCCAGCTGCCACATCTCACGGGTAGGTA	DC-2 GTGCGCGCCTCTTCGCTATTACGCCAGCTGCCCACATCTCACGGGTAAGGTAACGTAATACCGCC GTGCCCCCCATATCTGGCCGGAACAAGTGGAA <u>GGTCA</u> GCAGTTGGCGAGCATTGAAGAATAGGT TGCACTCTACCGCCATCAACGCCGTATCCGGCCCTTTTTAACTGAAGGGCAGAGCGTTTCGTTAC -30 -20 -10 0 +10 +20 GTTTGATTAAAAACATAACAGGAAGAAAAATGCCCCGCTTACGCAGGGCATCCATTTATTACTC	DC-2 GTGCGCGCCTCTTCGCTATTACGCCAGCTGCCACATCTCACGGGTACGTAACGTAATACGCGCGGCC GTGCCCCCCATATCTGGCCGGAACAAGTGGAAGAAGTGGACAGTGGCAGCATTGAAGAATAGGTAACCGCGCG GTGCCCCCCATATCTGGCCGGAACAAGTGGAAGCAGTGGCAGCATTGAAGAATAGGTAACCGCGCG TGCACTCTACCGCCATCAACGCCGTATCCGGCCTTTTTAAACTGAAGGGCAGAGCGTTTCGTACCAC -30 -20 -10 0 +10 +20 +30 GTTTGATTAAAAACATAACAGCGGAGGAAGAAAATGCCCCGCTTACCGCGCTTACCACC 1 <	DC-2 GTGCGCGCCTCTTCGCTATTACGCCAGCTGCCCACATCTCCGCGGGTAGGTA	DC-2 GTGCGCGCCTCTTGGCTATTACGCCAGCTGCCCACATCTCACGGGTAGGTA	DC-2 GTGCGCGCCTCTTCGCTATTACGCCAGCTGCCCACATCTCACCGGGTAGGTA	DC-2 GTGCGCGCCTCTTCGCTATTACGCCAGCTGCCCACATECCACGGGTAACGGTAACGTAATACCGCGGCGGGCGAACAACGGTGCCGCGGGTAAACGGTAACGGCGGCGGGGGGGG	DC-2 GTGCGCGCCTCTTCGCTATTACGCCAGCTGCCCACATCTCACGGGTAGGTA	DC-2 GTGCGCGCCTCTTCGCTATTACGCCAGCTGCCACCTCTCACGGGTAACGTAATACGCGCGGGGGAAAACGGTGCGCCAACG GTGCCCCCCATATCTGGCCGGAACAAGTGGAAGAAGTGGAAGGTAAGGTAACGTAATACGTAACGCTATTCGCAGCTGCGCT TGCACTCTACCGCCATCAACGCCGTATCCGGCCTTTTTAAACTGAAGGGCAGAGCATTGAAGAATAGGTAACGCTATTCGCAGCTGCGCT -30 -20 -10 0 +10 +20 +30 +40 +6 GTTTGATTAAAAACATAACATAACAGGAAGAAAATGCCCCGCTTACCGCGCTACCCGCGCTTACCACGCGTAACGCGATTACGCACGGCCATCCAT	DC-2 GTGCGCGCCTCTTGGCTATTACGCCAGCTGCCCAACATCTCACGGGTAAGGTAAGGTAAGGTAATACCGCGGCGGGGGAAAAGGGCCAACGTGGCGCGACAAGTGGAAGGTGCGCCCAACGTGGCGCGCGGGGGGGG	DC-2 GTGCGCGCCTCTTCGCTATTACGCCAGCTGCCCACTCTCACCGGGTACGTAACGTAATACCGCGGGGGGAAAACGGTGCGCCAACGTGGGCCGGGGGGCACCACGTGGGCCGCGGGGGGGG	DC-2 GTGCGCGCCTCTTGGCTATTACGCCAGCTGCCCACATCCACGGGGTAGGTA

EC-1 ACTGECGACGTTAATCACGCTGECCAACCTGT<u>TTCGGG</u>CGGACCAAATGATACGTCGGTGGGAGAGGTCTCACTAAAAACGGGGGGATAACGCCTTAAATG EC-2 AAGCTCACTGCTGGCGACGCTGGATTACCTC<u>GAACAG</u>TTACGGGGGAAAGAACCCAATACAGCAAATAGGCGTGATATAGTCAACGTGGCGGGAATGGGAATAC EC-3 GATATGGGCGCAGCGTTCGATGAAATGGACGC<u>GCGCT</u>CCCATGCCTATCACCCTTGCGTCGCGGGCGCCGCTCAGCGCAATCGGCTGTGTGATGGA EC-16 CGGACAGCTTTAATAAACCCTGCACTTATCTG<mark>TTTAG</mark>AG¢AATGCGGTGTTAGTTGCAGCAAGCAAACATTAACCATAGCTAATGATTTATAGCCATAT

FIG. 3. Sequence analysis of Tn7 insertion sites. The boxed nucleotides indicate the 5-bp chromosomal sequence duplicated upon Tn7 insertion (10, 16, 18). The upper panel also shows the sequence of attTn7; the central base pair of the duplicated sequence is designated 0; sequences leftward (towards *phoS*) are given negative values, and sequences rightward (towards *glmS*) are given positive values (see reference 18); the COOH terminus of the *glmS* gene product is also indicated (10). The bar underlines the region containing the nucleotides required for attTn7 target activity (11, 18, 21). Among the *tnsD*-dependent (DC) sites, sequence identities with attTn7 are indicated in boldface, and positions with three sequence identities among attTn7 and the pseudo-attTn7 sites are indicated with an asterisk. The sequence of two independent DC-1 insertions was determined; a difference of 1 bp in the positions of the duplicated sequences sequences of *tnsE*-dependent (EC) sites. Positions of sequence identity among at least three of the EC sites are indicated by boldface type and *. The chromosomal locations of the DC and EC sites are not known, although sequence comparisons suggest that the DC-3 insertion may lie within the bacterial aceK gene (6, 13). Nucleotide sequences of the DC and EC sites have been deposited in the GenBank data base (accession no. M31529 to M31536).

of this view, a *tnsD*-dependent binding activity that specifically recognizes *att*Tn7 has been identified (27); the TnsD polypeptide copurifies with this *att*Tn7-binding activity (K. M. Kubo and N. L. Craig, unpublished observations). Moreover, the *tnsD*-dependent recognition region in *att*Tn7 (between *att*Tn7 +28 to +55) corresponds to the region of sequence similarity among the *tnsD* target sites, i.e., *att*Tn7 and the pseudo-*att*Tn7 sites.

Is the ability of Tn7 to use two distinct classes of target sites advantageous? Target site-specific insertion into attTn7 provides a union between the host and Tn7 in which no bacterial gene is inactivated, although sequences in a bacterial gene (glmS) are required for Tn7 insertion (10). The ability of Tn7 to transpose with little site selectivity is perhaps most useful in its transfer to and among plasmids.

We thank members of the laboratory for many helpful discussions and Candy Waddell, Pascal Gamas, Roland Bainton, and Rick Myers for comments on the manuscript.

K.M.K. was supported by a Public Health Service genetics training grant from the National Institute of General Medical Sciences. This work was supported by a Public Health Service grant from the National Institute of Allergy and Infectious Diseases to N.L.C.

LITERATURE CITED

- Arciszewska, L. K., D. Drake, and N. L. Craig. 1989. Transposon Tn7: cis-acting sequences in transposition and transposition immunity. J. Mol. Biol. 207:35–52.
- Barth, P. T., N. Datta, R. W. Hedges, and N. J. Grinter. 1976. Transposition of a deoxyribonucleic acid sequence encoding trimethoprim and streptomycin resistances from R483 to other replicons. J. Bacteriol. 125:800-810.
- 3. Barth, P. T., and N. Grinter. 1977. Map of plasmid RP4 derived by insertion of transposon C. J. Mol. Biol. 113:455-474.
- 4. Barth, P. T., N. J. Grinter, and D. E. Bradley. 1978. Conjugal transfer system of plasmid RP4: analysis by transposon 7 insertion. J. Bacteriol. 133:43-52.
- 5. Berg, D. E., and M. M. Howe (ed.). 1989. Mobile DNA.

American Society for Microbiology, Washington, D.C.

- Cortay, J. C., F. Bleicher, C. Rieul, H. C. Reeves, and A. J. Cozzone. 1988. Nucleotide sequence and expression of the *aceK* gene coding for isocitrate dehydrogenase kinase/phosphatase in *Escherichia coli*. J. Bacteriol. 170:89–97.
- Craig, N. L. 1989. Transposon Tn7, p. 211-225. In D. E. Berg and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
- 8. Fling, M., J. Kopf, and C. Richards. 1985. Nucleotide sequence of the transposon Tn7 gene encoding an aminoglycoside-modifying enzyme, 3" (9)-O-nucleotidyltransferase. Nucleic Acids Res. 13:7095-7106.
- 9. Fling, M., and C. Richards. 1983. The nucleotide sequence of the trimethoprim-resistant dihydrofolate reductase gene harbored by Tn7. Nucleic Acids Res. 11:5147–5158.
- Gay, N. J., V. L. J. Tybulewicz, and J. E. Walker. 1986. Insertion of transposon Tn7 into the *Escherichia coli glmS* transcriptional terminator. Biochem J. 234:111-117.
- Gringauz, E., K. A. Orle, C. S. Waddell, and N. L. Craig. 1988. Recognition of *Escherichia coli att*Tn7 by transposon Tn7: lack of specific sequence requirements at the point of Tn7 insertion. J. Bacteriol. 170:2832-2840.
- 12. Hauer, B., and J. A. Shapiro. 1984. Control of Tn7 transposition. Mol. Gen. Genet. 194:149-158.
- 13. Klumpp, D. J., D. W. Plank, L. J. Bowdin, C. S. Stueland, T. Chung, and D. C. LaPorte. 1988. Nucleotide sequence of *aceK*, the gene encoding isocitrate dehydrogenase kinase/phosphatase. J. Bacteriol. 170:2763–2769.
- 14. Krishnapillai, V., M. Welxer, J. Nash, and D. H. Figurski. 1987. Genetic basis of a Tn7 insertion mutation in the *trfA* region of the promiscuous IncP-1 plasmid R18 which affects its host range. Plasmid 17:164-166.
- Lichenstein, C., and S. Brenner. 1981. Site-specific properties of Tn7 transposition into the *E. coli* chromosome. Mol. Gen. Genet. 183:380-387.
- Lichenstein, C., and S. Brenner. 1982. Unique insertion site of Tn7 in the *E. coli* chromosome. Nature (London) 297:601-603.
- 17. Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- 18. McKown, R. L., K. A. Orle, T. Chen, and N. L. Craig. 1988.

Sequence requirements of *Escherichia coli att*Tn7, a specific site of transposon Tn7 insertion. J. Bacteriol. **170**:352–358.

- 19. Moore, R. J., and V. Krishnapillai. 1982. Tn7 and Tn501 insertions into the *Pseudomonas aeruginosa* plasmid R91-5: mapping of two transfer regions. J. Bacteriol. 149:276-283.
- Nash, J., and V. Krishnapillai. 1987. DNA sequence analysis of host range mutants of the promiscuous IncP-1 plasmids R18 and R68 with Tn7 insertions in *oriV*. Plasmid 18:35-45.
- Qadri, M. I., C. C. Flores, A. J. Davis, and C. P. Lichenstein. 1989. Genetic analysis of *attTn7*, the transposon Tn7 attachment site in *Escherichia coli*, using a novel M13-based transduction assay. J. Mol. Biol. 207:85–98.
- Raleigh, E. A., and N. Kleckner. 1984. Multiple IS10 rearrangements in E. coli. J. Mol. Biol. 173:437–461.
- 23. Rogers, M., N. Ekaterinaki, E. Nimmo, and D. Sherratt. 1986.

Analysis of Tn7 transposition. Mol. Gen. Genet. 205:550-556.

- 24. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5467.
- 25. Simonsen, C. C., E. Y. Chen, and A. D. Levinson. 1983. Identification of the type 1 trimethoprim-resistant dihydrofolate reductase specified by the *Escherichia coli* R-plasmid R483: comparison with procaryotic and eucaryotic dihydrofolate reductases. J. Bacteriol. 155:1001-1008.
- Waddell, C. S., and N. L. Craig. 1988. Tn7 transposition: two transposition pathways directed by five Tn7-encoded genes. Genes. Dev. 2:137-149.
- Waddell, C. S., and N. L. Craig. 1989. Tn7 transposition: recognition of the *attTn7* target sequence. Proc. Natl. Acad. Sci. USA 86:3958–3962.