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Expression of Hailey–Hailey Disease Mutations in Yeast

To the Editor:

The yeast Saccharomyces cerevisiae, with its compact
genome and tractable genetics, is a valuable model organ-
ism for the heterologous expression of mammalian pro-
teins. In this letter, we show that phenotypic screening in
yeast provides insight into the molecular basis of a human
disease.

Hailey–Hailey disease (HHD), or benign familial pe-
mphigus, is an autosomal dominant intraepidermal blister-
ing skin disorder. HHD has been mapped to ATP2C1 (Hu
et al, 2000; Sudbrak et al, 2000), which encodes the
Secretory Pathway Ca2þ–ATPase 1 (hSPCA1). This protein
shares 49% identity with Pmr1, the founding member of a
family of Golgi-localized Ca2þ and Mn2þ -transporting
pumps (Rudolph et al, 1989; Sorin et al, 1997). The pheno-
types of pmr1 mutants are similar to the ion homeostasis
and cell surface abnormalities reported in HHD keratin-
ocytes (Hu et al, 2000; Sudbrak et al, 2000). Defects in
protein sorting, processing and glycosylation in pmr1 mu-
tants result from Ca2þ and Mn2þ deficiency within the se-
cretory pathway (Antebi & Fink, 1992; Durr et al, 1998). Such
defects can be assessed by hypersensitivity to cation
chelators (BAPTA or EGTA) (Rudolph et al, 1989; Wei et al,
2000). In addition, pmr1 mutants fail to clear calcium and
manganese from the cytosol, thus their growth is inhibited
by excess extracellular levels of these ions (Halachmi and
Eilam, 1996; Wei et al, 2000). Quantitative growth assays in
BAPTA- or Mn2þ - supplemented media have been very ef-
fective in screening Pmr1 site-directed point mutations.
These approaches identified the critical role of membrane
helices M4, M5, and M6 in ion binding, transport, and Ca2þ /
Mn2þ selectivity (Mandal et al, 2000, 2003; Wei et al, 2000).

Strikingly, the distribution of 15 missense mutations
identified in HHD patients (Hu et al, 2000; Sudbrak et al,
2000; Chao et al, 2002; Dobson-Stone et al, 2002; Yokota
et al, 2002; Li et al, 2003) are clustered in the stretch of
polypeptide including M4, M5, M6, and the intervening
cytosolic loop that constitutes the nucleotide-binding and
phosphorylation domains characteristic of P-type ion pump
superfamily (Fig 1). In contrast, chain termination or non-
sense mutations scatter along the entire length of hSPCA1
(not shown). Among the point mutations, D742Y and A304S
most likely disrupt ion binding, as seen in a homology model
of hSPCA1 based on the crystal structure of the related
sarco/endoplasmic reticulum Ca2þ -ATPase from rabbit
muscle in the high affinity calcium-binding conformation

(Toyoshima et al, 2000; Ton and Rao, 2004). The carbonyl
oxygen of D742 directly coordinates Ca2þ and has been
shown to be indispensable for Pmr1 function, whereas
the backbone carbonyl oxygen of A304 binds calcium in
SERCA1. L318P, T709M, and P744R are likely to cause
structural perturbations, since replacement of the equiva-
lent residues with Ala in yeast Pmr1 could be tolerated
without loss of function (Wei et al, 2000, Mandal et al, 2003).
Two other substitutions of Ala and Gly residues with bulkier
side chains (A746T, G309C) are also likely to destabilize
protein structure based on their location in the homology
model (Ton and Rao, 2004).

A random subset of six HHD missense mutations shown
in Fig 1 was introduced into hSPCA1 and expressed in a
yeast mutant lacking endogenous Ca2þ -ATPases. We had
shown that heterologous expression of ATP2C1 in yeast
completely restored mutant phenotypes resulting from
disruption of PMR1 (Ton et al, 2002). Here, HHD mutants
L341P, C411R, T570I, T709M, and D742Y fail to correct
BAPTA or Mn2þ hypersensitivity of pmr1D (Fig 2), indicative
of loss of Ca2þ and Mn2þ transport function, respectively.
Indeed, Fairclough et al (2003) reported a loss of Ca2þ and
Mn2þ -dependent phosphoenzyme intermediate formation,
and low protein expression level for four of these mutants
(L341P, C411R, T570I, and D742Y) expressed in COS-1
cells, whereas the effects of mutant T709M have not been
reported before. The same study, however, failed to discern
any defects in enzyme catalysis, expression level or Golgi
localization of mutant P201L. Consistent with these results,
in the yeast model, P201L, like wild-type hSPCA1, fully re-
stores cellular phenotypes of pmr1D. Could P201L be a
benign polymorphism, despite its absence from 100 control
sequences (Sudbrak et al, 2000; Fairclough et al, 2003)? If
so, the underlying cause of HHD in patients might be
undetected mutations in introns or promoter regions. These
findings underscore the importance of confirming the ef-
fects of amino acid substitutions with functional assays.

It has been hypothesized that the autosomal dominant
mode of inheritance of HHD is due to haploinsufficiency of
SPCA1 rather than dominant negative effects of the mutants
(Hu et al, 2000); however, there has not been direct exper-
imental evidence supporting this speculation. We attempted
to distinguish these possibilities by expressing the six HHD
mutations, shown in Fig 2, in yeast carrying wild-type Pmr1.
Given the high level of homology between Pmr1 and
hSPCA1, any dominant negative effect of the mutants
would have been detectable by changes in phenotype.
Yeast expressing both Pmr1 and HHD mutants, however,
showed no hypersensitivity to BAPTA or Mn2þ toxicity (Fig
S1). Thus, at least in yeast, HHD mutants appear to exert noAbbreviation: HHD, Hailey–Hailey disease
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dominant negative effects. It should be noted that dominant
negative mutations in the related Hþ pump, Pma1, could be
readily detected by growth toxicity due to expression of
mutants in wild-type yeast (Harris et al, 1994). Our results
are consistent with hSPCA1 haploinsufficiency as the basis
for HHD.

In summary, we show that S. cerevisiae is a convenient
and facile model for the study of HHD. Mutations can be
rapidly screened in yeast for loss-of-function phenotypes
related to the disease. Our studies in yeast thus lend sup-
port to findings in mammalian cells regarding the molecular
basis of HHD.
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Figure 1
Missense HHD mutations cluster in function-
ally critical regions of hSPCA1. Fifteen mis-
sense mutations found in patients with HHD
mainly cluster in membrane helices M4, M5, and
M6 which are involved in Ca2þ /Mn2þ -binding,
and in the large cytoplasmic loop comprising the
ATP-binding and phosphorylation domains. Note
that residue numbers are based on the long
splice variant of hSPCA1 (Ikeda et al, 2001). Mu-
tants expressed in yeast are shown in black.

Figure 2
Phenotype screening of HHDmutants in yeast. A yeast strain lacking
endogenous calcium pumps (K616; pmr1Dpmc1Dcnb1D) was trans-
formed with plasmid bearing wild-type, mutant, or truncated (G645X)
hSPCA1 as described in Ton et al (2002), then grown overnight at 301C
in synthetic drop-out media supplemented with 0.5 mM BAPTA (A) or 8
mM MnCl2 (B). Growth (A600 nm) was measured and expressed as per-
cent of control (no BAPTA or MnCl2). Data shown are averages of du-
plicates and representative of 3 different experiments. G645X was a
spontaneous mutant that arose during mutagenesis, and was used as a
representative of hSPCA1 truncation mutations.

Figure S1
Hailey–Hailey Disease mutants in wild-type host do not impair
BAPTA and Mn2þ resistance. Wild-type yeast (K601) was trans-
formed with a multicopy plasmid carrying each of the Hailey–Hailey
mutants. Cells were grown at 301C in media lacking uracil but supple-
mented with 0.5 mM BAPTA (A) or 4 mM MnCl2 (B). After 24 h, growth
was measured as optical density at 600 nm. Data are averages of
triplicates. All strains, including truncated hSPCA1 (G645X), grew as
well or nearly as well as wild-type (p40.05: Student’s two-tailed t test).
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